Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol Methods ; 324: 114858, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38029970

RESUMO

People living with human immunodeficiency virus type 1 (HIV-1), even if successfully treated with a combined antiretroviral therapy, display a persistent inflammation and chronic immune activation, and an increasing risk of developing cardiovascular and thrombotic events, cancers, and neurologic disorders. Accumulating evidence reveals that biologically active HIV-1 proteins may play a role in the development of these HIV-1-associated conditions. The HIV-1 matrix protein p17 (p17) is released and accumulates in different organs and tissue where it may exert multiple biological activities on different target cells. To assess a role of p17 in different HIV-1-related pathological processes, it is central to definitively ascertain and quantitate its expression in a large number of sera obtained from HIV-1-infected (HIV-1+) patients. To this aim, we developed a specific and highly sensitive p17 capture immunoenzymatic assay. Data obtained highlight a heterogeneous expression of p17 in blood of tested patients, with patients who were negative or displayed from low to relatively high p17 blood concentrations (range from 0.05 to 7.29 nM). Moreover, we found that blood p17 concentration was totally independent from the viremic status of the patient. This finding calls for monitoring HIV-1+ patients in order to evaluate a possible correlation between p17 amount in blood and the likelihood of developing HIV-1-related pathological conditions.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Antígenos HIV/metabolismo , Viremia
3.
J Med Virol ; 95(6): e28848, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37294038

RESUMO

During COVID-19 pandemic, consensus genomic sequences were used for rapidly monitor the spread of the virus worldwide. However, less attention was paid to intrahost genetic diversity. In fact, in the infected host, SARS-CoV-2 consists in an ensemble of replicating and closely related viral variants so-called quasispecies. Here we show that intrahost single nucleotide variants (iSNVs) represent a target for contact tracing analysis. Our data indicate that in the acute phase of infection, in highly likely transmission links, the number of viral particles transmitted from one host to another (bottleneck size) is large enough to propagate iSNVs among individuals. Furthermore, we demonstrate that, during SARS-CoV-2 outbreaks when the consensus sequences are identical, it is possible to reconstruct the transmission chains by genomic investigations of iSNVs. Specifically, we found that it is possible to identify transmission chains by limiting the analysis of iSNVs to only three well-conserved genes, namely nsp2, ORF3, and ORF7.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Quase-Espécies , Pandemias , Genoma Viral
4.
Viruses ; 15(2)2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36851546

RESUMO

Severe COVID-19 is characterized by angiogenic features, such as intussusceptive angiogenesis, endothelialitis, and activation of procoagulant pathways. This pathological state can be ascribed to a direct SARS-CoV-2 infection of human lung ECs. Recently, we showed the capability of SARS-CoV-2 to infect ACE2-negative primary human lung microvascular endothelial cells (HL-mECs). This occurred through the interaction of an Arg-Gly-Asp (RGD) motif, endowed on the Spike protein at position 403-405, with αvß3 integrin expressed on HL-mECs. HL-mEC infection promoted the remodeling of cells toward a pro-inflammatory and pro-angiogenic phenotype. The RGD motif is distinctive of SARS-CoV-2 Spike proteins up to the Omicron BA.1 subvariant. Suddenly, a dominant D405N mutation was expressed on the Spike of the most recently emerged Omicron BA.2, BA.4, and BA.5 subvariants. Here we demonstrate that the D405N mutation inhibits Omicron BA.5 infection of HL-mECs and their dysfunction because of the lack of Spike/integrins interaction. The key role of ECs in SARS-CoV-2 pathogenesis has been definitively proven. Evidence of mutations retrieving the capability of SARS-CoV-2 to infect HL-mECs highlights a new scenario for patients infected with the newly emerged SARS-CoV-2 Omicron subvariants, suggesting that they may display less severe disease manifestations than those observed with previous variants.


Assuntos
COVID-19 , Viroses , Humanos , Células Endoteliais , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Integrinas , Mutação
5.
New Microbiol ; 46(1): 60-64, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36853820

RESUMO

In this study we evaluated the antiviral activity of the Silver Barrier® disinfectant against SARSCoV-2. Silver Barrier® showed time- and concentration-dependent antiviral activity against SARSCoV-2. After 5 min contact time, Silver Barrier® at 0.002% showed a strong inhibitory effect (p<0.001), with a 2-fold reduction of viral genome copy numbers, and a robust suppression (94%) of SARS-CoV-2 infectivity. Considering the effects obtained in solution and within a very short time, Silver Barrier® stands as an excellent new candidate for the disinfection of work environments, especially at the healthcare level, where there are people at high risk of serious illnesses.


Assuntos
COVID-19 , Desinfetantes , Humanos , SARS-CoV-2 , Desinfetantes/farmacologia , COVID-19/prevenção & controle , Prata/farmacologia , Antivirais/farmacologia
7.
New Microbiol ; 45(4): 355-357, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36066212

RESUMO

Persistence of detectable viral RNA does not depend on the symptomatic status of the patients. Here we describe the case of a strongly immunocompromised patient living with a prolonged SARSCoV-2 Alpha variant infection without showing any symptoms. The importance of our findings is that the persistent infection with an old SARS-CoV-2 strain, in an immunocompromised host, may allow recombination events generating new viral variants whose pathogenicity cannot be predicted. Our observation calls for the urgent need for continuous monitoring of SARS-CoV-2 genomic evolution in immunocompromised patients.


Assuntos
COVID-19 , Soropositividade para HIV , HIV-1 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , HIV-1/genética , Hospedeiro Imunocomprometido
8.
Virus Evol ; 8(1): veac042, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35706980

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) emerge for their capability to better adapt to the human host aimed and enhance human-to-human transmission. Mutations in spike largely contributed to adaptation. Viral persistence is a prerequisite for intra-host virus evolution, and this likely occurred in immunocompromised patients who allow intra-host long-term viral replication. The underlying mechanism leading to the emergence of variants during viral persistence in the immunocompromised host is still unknown. Here, we show the existence of an ensemble of minor mutants in the early biological samples obtained from an immunocompromised patient and their dynamic interplay with the master mutant during a persistent and productive long-term infection. In particular, after 222 days of active viral replication, the original master mutant, named MB610, was replaced by a minor quasispecies (MB61222) expressing two critical mutations in spike, namely Q493K and N501T. Isolation of the two viruses allowed us to show that MB61222 entry into target cells occurred mainly by the fusion at the plasma membrane (PM), whereas endocytosis characterized the entry mechanism used by MB610. Interestingly, coinfection of two human cell lines of different origin with the SARS-CoV-2 isolates highlighted the early and dramatic predominance of MB61222 over MB610 replication. This finding may be explained by a faster replicative activity of MB61222 as compared to MB610 as well as by the capability of MB61222 to induce peculiar viral RNA-sensing mechanisms leading to an increased production of interferons (IFNs) and, in particular, of IFN-induced transmembrane protein 1 (IFITM1) and IFITM2. Indeed, it has been recently shown that IFITM2 is able to restrict SARS-CoV-2 entry occurring by endocytosis. In this regard, MB61222 may escape the antiviral activity of IFITMs by using the PM fusion pathway for entry into the target cell, whereas MB610 cannot escape this host antiviral response during MB61222 coinfection, since it has endocytosis as the main pathway of entry. Altogether, our data support the evidence of quasispecies fighting for host dominance by taking benefit from the cell machinery to restrict the productive infection of competitors in the viral ensemble. This finding may explain, at least in part, the extraordinary rapid worldwide turnover of VOCs that use the PM fusion pathway to enter into target cells over the original pandemic strain.

9.
PLoS One ; 17(6): e0270024, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35771751

RESUMO

During the first wave of infections, neurological symptoms in Coronavirus Disease 2019 (COVID-19) patients raised particular concern, suggesting that, in a subset of patients, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could invade and damage cells of the central nervous system (CNS). Indeed, up to date several in vitro and in vivo studies have shown the ability of SARS-CoV-2 to reach the CNS. Both viral and/or host related features could explain why this occurs only in certain individuals and not in all the infected population. The aim of the present study was to evaluate if onset of neurological manifestations in COVID-19 patients was related to specific viral genomic signatures. To this end, viral genome was extracted directly from nasopharyngeal swabs of selected SARS-CoV-2 positive patients presenting a spectrum of neurological symptoms related to COVID-19, ranging from anosmia/ageusia to more severe symptoms. By adopting a whole genome sequences approach, here we describe a panel of known as well as unknown mutations detected in the analyzed SARS-CoV-2 genomes. While some of the found mutations were already associated with an improved viral fitness, no common signatures were detected when comparing viral sequences belonging to specific groups of patients. In conclusion, our data support the notion that COVID-19 neurological manifestations are mainly linked to patient-specific features more than to virus genomic peculiarities.


Assuntos
Ageusia , COVID-19 , Sistema Nervoso Central , Genômica , Humanos , SARS-CoV-2/genética
10.
Proc Natl Acad Sci U S A ; 119(27): e2122050119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35763571

RESUMO

AIDS-defining cancers declined after combined antiretroviral therapy (cART) introduction, but lymphomas are still elevated in HIV type 1 (HIV-1)-infected patients. In particular, non-Hodgkin's lymphomas (NHLs) represent the majority of all AIDS-defining cancers and are the most frequent cause of death in these patients. We have recently demonstrated that amino acid (aa) insertions at the HIV-1 matrix protein p17 COOH-terminal region cause protein destabilization, leading to conformational changes. Misfolded p17 variants (vp17s) strongly impact clonogenic B cell growth properties that may contribute to B cell lymphomagenesis as suggested by the significantly higher frequency of detection of vp17s with COOH-terminal aa insertions in plasma of HIV-1-infected patients with NHL. Here, we expand our previous observations by assessing the prevalence of vp17s in large retrospective cohorts of patients with and without lymphoma. We confirm the significantly higher prevalence of vp17s in lymphoma patients than in HIV-1-infected individuals without lymphoma. Analysis of 3,990 sequences deposited between 1985 and 2017 allowed us to highlight a worldwide increasing prevalence of HIV-1 mutants expressing vp17s over time. Since genomic surveillance uncovered a cluster of HIV-1 expressing a B cell clonogenic vp17 dated from 2011 to 2019, we conclude that aa insertions can be fixed in HIV-1 and that mutant viruses displaying B cell clonogenic vp17s are actively spreading.


Assuntos
Linfócitos B , Antígenos HIV , HIV-1 , Linfoma Relacionado a AIDS , Produtos do Gene gag do Vírus da Imunodeficiência Humana , Linfócitos B/virologia , Variação Genética , Antígenos HIV/genética , HIV-1/genética , HIV-1/isolamento & purificação , Humanos , Linfoma Relacionado a AIDS/epidemiologia , Linfoma Relacionado a AIDS/virologia , Prevalência , Estudos Retrospectivos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
11.
Viruses ; 14(4)2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35458435

RESUMO

Integrins represent a gateway of entry for many viruses and the Arg-Gly-Asp (RGD) motif is the smallest sequence necessary for proteins to bind integrins. All Severe Acute Respiratory Syndrome Virus type 2 (SARS-CoV-2) lineages own an RGD motif (aa 403-405) in their receptor binding domain (RBD). We recently showed that SARS-CoV-2 gains access into primary human lung microvascular endothelial cells (HL-mECs) lacking Angiotensin-converting enzyme 2 (ACE2) expression through this conserved RGD motif. Following its entry, SARS-CoV-2 remodels cell phenotype and promotes angiogenesis in the absence of productive viral replication. Here, we highlight the αvß3 integrin as the main molecule responsible for SARS-CoV-2 infection of HL-mECs via a clathrin-dependent endocytosis. Indeed, pretreatment of virus with αvß3 integrin or pretreatment of cells with a monoclonal antibody against αvß3 integrin was found to inhibit SARS-CoV-2 entry into HL-mECs. Surprisingly, the anti-Spike antibodies evoked by vaccination were neither able to impair Spike/integrin interaction nor to prevent SARS-CoV-2 entry into HL-mECs. Our data highlight the RGD motif in the Spike protein as a functional constraint aimed to maintain the interaction of the viral envelope with integrins. At the same time, our evidences call for the need of intervention strategies aimed to neutralize the SARS-CoV-2 integrin-mediated infection of ACE2-negative cells in the vaccine era.


Assuntos
COVID-19 , Vacinas , Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , COVID-19/prevenção & controle , Endocitose , Células Endoteliais/metabolismo , Humanos , Integrina alfaV/metabolismo , Integrina beta3/metabolismo , Oligopeptídeos , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
12.
J Med Virol ; 94(1): 413-416, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34515998

RESUMO

In December 2020, Italy experienced the first case of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) B.1.1.7 lineage. In January 2021, we identified 21 cases of this variant in Corzano, defining the first outbreak of SARS-CoV-2 B.1.1.7 lineage in Italy. The high transmissibility of the B.1.1.7 variant represented an important benefit for the virus, which became rapidly dominant on the territory. Containment measures induced the epidemic curve onto a decreasing trajectory underlining the importance of appropriate control and surveillance for restraint of virus spread. Highlights The first Italian outbreak of SARS-CoV-2 B.1.1.7 lineage occurred in Lombardy in January 2021. The outbreak originated by a single introduction of the B.1.1.7 lineage. The genomic sequencing revealed, for the first time, the presence of the V551F mutation in the B.1.1.7 lineage in Italy. Surveillance, prompt sequencing and tracing efforts were fundamental to identify and to quickly contain the outbreak.


Assuntos
Teste de Ácido Nucleico para COVID-19 , COVID-19/epidemiologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Adolescente , Adulto , COVID-19/transmissão , Criança , Pré-Escolar , Surtos de Doenças/estatística & dados numéricos , Feminino , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Controle de Infecções/métodos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Filogenia , Análise de Sequência de RNA , Sequenciamento Completo do Genoma , Adulto Jovem
13.
Viruses ; 13(12)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34960779

RESUMO

Genotype screening was implemented in Italy and showed a significant prevalence of new SARS-CoV-2 mutants carrying Q675H mutation, near the furin cleavage site of spike protein. Currently, this mutation, which is expressed on different SARS-CoV-2 lineages circulating worldwide, has not been thoughtfully investigated. Therefore, we performed phylogenetic and biocomputational analysis to better understand SARS-CoV-2 Q675H mutants' evolutionary relationships with other circulating lineages and Q675H function in its molecular context. Our studies reveal that Q675H spike mutation is the result of parallel evolution because it arose independently in separate evolutionary clades. In silico data show that the Q675H mutation gives rise to a hydrogen-bonds network in the spike polar region. This results in an optimized directionality of arginine residues involved in interaction of spike with the furin binding pocket, thus improving proteolytic exposure of the viral protein. Furin was predicted to have a greater affinity for Q675H than Q675 substrate conformations. As a consequence, Q675H mutation could confer a fitness advantage to SARS-CoV-2 by promoting a more efficient viral entry. Interestingly, here we have shown that Q675H spike mutation is documented in all the VOCs. This finding highlights that VOCs are still evolving to enhance viral fitness and to adapt to the human host. At the same time, it may suggest Q675H spike mutation involvement in SARS-CoV-2 evolution.


Assuntos
Furina/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Sítios de Ligação , Aptidão Genética , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Mutação , Filogenia , Ligação Proteica , Conformação Proteica , SARS-CoV-2/classificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química
14.
Microorganisms ; 9(7)2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34361874

RESUMO

SARS-CoV-2-associated acute respiratory distress syndrome (ARDS) and acute lung injury are life-threatening manifestations of severe viral infection. The pathogenic mechanisms that lead to respiratory complications, such as endothelialitis, intussusceptive angiogenesis, and vascular leakage remain unclear. In this study, by using an immunofluorescence assay and in situ RNA-hybridization, we demonstrate the capability of SARS-CoV-2 to infect human primary lung microvascular endothelial cells (HL-mECs) in the absence of cytopathic effects and release of infectious particles. Preliminary data point to the role of integrins in SARS-CoV-2 entry into HL-mECs in the absence of detectable ACE2 expression. Following infection, HL-mECs were found to release a plethora of pro-inflammatory and pro-angiogenic molecules, as assessed by microarray analyses. This conditioned microenvironment stimulated HL-mECs to acquire an angiogenic phenotype. Proteome analysis confirmed a remodeling of SARS-CoV-2-infected HL-mECs to inflammatory and angiogenic responses and highlighted the expression of antiviral molecules as annexin A6 and MX1. These results support the hypothesis of a direct role of SARS-CoV-2-infected HL-mECs in sustaining vascular dysfunction during the early phases of infection. The construction of virus-host interactomes will be instrumental to identify potential therapeutic targets for COVID-19 aimed to inhibit HL-mEC-sustained inflammation and angiogenesis upon SARS-CoV-2 infection.

16.
Emerg Microbes Infect ; 10(1): 1241-1243, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34092181

RESUMO

In this study, we show that BNT162b2 vaccine-elicited antibodies efficiently neutralize SARS-CoV-2 authentic viruses belonging to B.1, B.1.1.7, B.1.351, B.1.525 and P.1 lineages. Interestingly, the neutralization of B.1.1.7 and B.1.525 lineages was significantly higher, whereas the neutralization of B.1.351 and P.1 lineages was robust but significantly lower as compared to B.1 lineage. Following our findings, we consider that the BNT162b2 vaccine offers protection against the current prevailing variants of SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Vacina BNT162 , COVID-19/imunologia , COVID-19/virologia , Humanos , Testes de Neutralização , SARS-CoV-2/classificação
18.
J Transl Med ; 18(1): 362, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967693

RESUMO

BACKGROUND: Since the first outbreak of SARS-CoV-2, the clinical characteristics of the Coronavirus Disease 2019 (COVID-19) have been progressively changed. Data reporting a viral intra-host and inter-host evolution favouring the appearance of mild SARS-CoV-2 strains are since being accumulating. To better understand the evolution of SARS-CoV-2 pathogenicity and its adaptation to the host, it is therefore crucial to investigate the genetic and phenotypic characteristics of SARS-CoV-2 strains circulating lately in the epidemic. METHODS: Nasopharyngeal swabs have been analyzed for viral load in the early (March 2020) and late (May 2020) phases of epidemic in Brescia, Italy. Isolation of SARS-CoV-2 from 2 high viral load specimens identified on March 9 (AP66) and on May 8 (GZ69) was performed on Vero E6 cells. Amount of virus released was assessed by quantitative PCR. Genotypic characterization of AP66 and GZ69 was performed by next generation sequencing followed by an in-depth in silico analysis of nucleotide mutations. RESULTS: The SARS-CoV-2 GZ69 strain, isolated in May from an asymptomatic healthcare worker, showed an unprecedented capability of replication in Vero E6 cells in the absence of any evident cytopathic effect. Vero E6 subculturing, up to passage 4, showed that SARS-CoV-2 GZ69 infection was as productive as the one sustained by the cytopathic strain AP66. Whole genome sequencing of the persistently replicating SARS-CoV-2 GZ69 has shown that this strain differs from the early AP66 variant in 9 nucleotide positions (C2939T; C3828T; G21784T; T21846C; T24631C; G28881A; G28882A; G28883C; G29810T) which lead to 6 non-synonymous substitutions spanning on ORF1ab (P892S; S1188L), S (K74N; I95T) and N (R203K, G204R) proteins. CONCLUSIONS: Identification of the peculiar SARS-CoV-2 GZ69 strain in the late Italian epidemic highlights the need to better characterize viral variants circulating among asymptomatic or paucisymptomatic individuals. The current approach could unravel the ways for future studies aimed at analyzing the selection process which favours viral mutations in the human host.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/virologia , Variação Genética , Pneumonia Viral/virologia , Substituição de Aminoácidos , Animais , Betacoronavirus/isolamento & purificação , Betacoronavirus/fisiologia , COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/epidemiologia , Efeito Citopatogênico Viral/genética , Efeito Citopatogênico Viral/fisiologia , Genoma Viral , Humanos , Itália/epidemiologia , Mutação , Pandemias , Filogenia , Pneumonia Viral/epidemiologia , Polimorfismo de Nucleotídeo Único , SARS-CoV-2 , Pesquisa Translacional Biomédica , Células Vero , Proteínas Virais/genética , Proteínas Virais/fisiologia , Cultura de Vírus/métodos , Replicação Viral/genética , Replicação Viral/fisiologia , Sequenciamento Completo do Genoma
19.
Microorganisms ; 8(6)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486193

RESUMO

Human Metapneumovirus (HMPV) is a major cause of lower respiratory tract infections. HMPV infection has been hypothesized to alter dendritic cell (DC) immune response; however, many questions regarding HMPV pathogenesis within the infected lung remain unanswered. Here, we show that HMPV productively infects human lung microvascular endothelial cells (L-HMVECs). The release of infectious virus occurs for up to more than 30 days of culture without producing overt cytopathic effects and medium derived from persistently HMPV-infected L-HMVECs (secretome) induced monocyte-derived DCs to prime naïve CD4 T-cells toward a Th2 phenotype. Moreover, we demonstrated that infected secretomes trigger DCs to up-regulate OX40L expression and OX40L neutralization abolished the pro-Th2 effect that is induced by HMPV-secretome. We clarified secretome from HMPV by size exclusion and ultracentrifugation with the aim to characterize the role of viral particles in the observed pro-Th2 effect. In both cases, the percentage of IL-4-producing cells and expression of OX40L returned at basal levels. Finally, we showed that HMPV, per se, could reproduce the ability of secretome to prime pro-Th2 DCs. These results suggest that HMPV, persistently released by L-HMVECs, might take part in the development of a skewed, pro-Th2 lung microenvironment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...